諸巷248號。
林朝夕放學回家,放下書包。
老林的書房裡點著一盞微燈,透過窗棱,他正在伏案工作,專心致志。
林朝夕看了一會兒,可能是心靈感應。老林在不經意間抬起頭,在看到她的瞬間,老林目光溫柔,笑盈盈地。
林朝夕推門進屋,老林放下筆,像她無數次找到老林,老林都會為她放下筆那般。
「今天在學校過的怎麼樣?」
「不怎麼樣。」
「嚯~有心事啊。」
「你覺得我是天才嗎?」林朝夕托腮問道。她視線下垂,看到老林寫了滿頁的數字符號,她好像離心目中的答案又遠了一些。
老林開始沉吟,神情認真專注。
林朝夕也開始安靜等待。
半晌後,老林砸了下嘴,林朝夕下意識坐直身體,卻聽老林說了兩個字——
「你猜?」
「爸爸你這是什麼回答!」
「你再猜」
林朝夕:「」
「這都猜不中,你怎麼做天才?」
「我怎麼猜嘛!」
「來來。」老林做了個手勢,挺起胸膛說,「換你來問我那個問題。」
林朝夕愣了,而後說:「老林,你是天才嗎」
在木桌對面,老林笑了起來。
「是啊。」
他這麼說。
如果裴之的電話能夠接通,林朝夕大概也會打電話問一問裴哥這個問題。
雖然裴之低調內斂,但如果她問,裴之的答案大概也會和老林一樣平靜自然。
——是啊。
所以她的問題在於不夠自信
林朝夕說不上來。
既然說不上來,就當作是個小插曲,林朝夕看著老林的案板,問:「你的工作進度怎麼樣?」
「所有進展背後都是思想的革新,你看貝葉斯提出先驗概率,認為概率是主觀是、不斷變化的參數,改變了頻率學派原有概率客觀的看法。」老林把草稿紙翻到背面,隨後畫了兩個圖案,標明定點,「你看啊,這是兩個圖,我們怎麼判定兩圖是否同構?」
林朝夕:「它們有相同數目的頂點,相同數目的邊,它們的點與點、邊與邊之間一一對應,並保持點和邊之間的關聯關係不變。」
「背挺熟。」老林笑了下,「根據圖同構的定義,g與g』同構的充要條是他們有相同的關聯矩陣。」
「嗯。」林朝夕認真聽了下去。
「我曾經在序列法上走過彎路,但它讓我在如何判定兩圖同構上有了新的想法。」
「你看啊,根據定義1,如果圖g中n個點以及連接這n個點之間的邊是連通的,那麼這個圖稱為圖g的n點的連通子圖,記g(vn);根據定義2」
老林邊說,邊手上不停地開始寫了起來。
林朝夕一開始還能聽懂他所闡述的定義部分,但到老林開始證g1g2相同關聯矩陣,她就聽得困難了。
她有時皺眉,有時又很想讓老林講慢點,但老林沒有像往常一樣關注她的反應,換上通俗易懂的解釋,停下來教她。
這次老林從一開始就沉浸在他的數學世界裡,他時而陷入長時間深思,時而又開始不間斷地平靜敘述。
他像是黑暗舞台上的演員,她是台下唯一的觀眾。
就算她閉著眼睛,都能想像老林內心手舞足蹈、興高采烈,陷入莫大愉悅的狀態。
無需交流不用讚嘆。
她坐在這裡,聽著就很好。
「所以,我現在要解決的部分,就是更好地在在求s(n)中減少同構判定的工作量。」老林眼睛發亮,用自信的語氣做總結。
過了一會兒,林朝夕才點了點頭。
桌面上是老林的草稿,這些是她雖然看不明白,但卻必須搞明白帶走的東西。
窗外暮色四合,院裡的草木隨風輕擺,時間所剩無幾,她準備出去煮個咖啡,回來繼續。
()
1秒記住品筆閣:www.
202.未解